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ABSTRACT

An experimental investigation of Sparse Disn-ibuted Memory (SDM) (Kanerva,
1988) is presented. SDM is an associative memory which can be thought of as a 3-layer
Artificial Neural Network. It uses massive parallelism, associates very large patterns, and
is trained rapidly. The theory of SDM was developed for uncorrelated bit _. In this
paper the behavior of SDM is examined when the constraint of random input is violated
and the memory is presented with highly-correlated dam for classification tasks.Experi-
ments from the domain of discrete-word speech recognition are used. These experiments
lead, in a step-by-step manner, to factors which improve the memory's ability to recall
and to generalize. It is shown that generaliTAtion can be enhanced with appropriate appLi-
cation of: (1) the form of encoding of class labels, (2) the placement of hard locations
within the memory, (3) the activation rule of hard locations, and (4) the write rule used to
modify the memory. Comparisons are made between SDM, a class-mean model, and the
Nearest Neighbor rule. ]:or single-talker digit recognition a form of SDM, called the
Selected Coordinate Design, attains 99.3% correct generalization.

Work reported herein was mRponed in part by Cooperative Agteernenu NC 2-,108 u_d NCC 2-387 betwee_ the National
Aemmuucs and Space Administration (NASA) and the Univ_sifies Space Researr.h Asmciafim (USRA).
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1. Introduction

In Penni Kanerva's lovely book (Kanerva, 1988) a model for associative memory is developed
based on the mathematical properties of large binary vector spaces. In that work, a point in the binary space

acts as a sensory pattern or as an address to a location within memory. For large input dimensions it is not
possible to implement a memory which has a unique hard location for every input pattern but only a sparse
subset. The properties of such sparse memories were investigated by Kanerva when the addresses of loca-
tions are randomly and uniformly selected from the set of all possible addresses and also when the input
patterns to the memory are selected from a uniform random distribution.

The Learning Systems Division of RIACS is involved in exploring the theotV and applications of associ-
ative memories and Sparse Dism'buted Memory (SDM) in particular. As such it is important to us to under-
stand the behavior of SDM when presented with non-random data. Non-uniformity is the rule rather than
the exception for most phenomena. The elegance and mathematical formulation of SDM affords a solid
reference point for this investigation.

This is the first report by the Learning Systems Division on the behavior of SDM in the domain of
Automatic Speech Recognition. Previous work has dealt with Text-to-Phoneme generation
(Joglekar,1989), issues in visual shape recognition (Oishausen,1988), capacity of the memory
(Keeler,1987), as well as others.* Presented here is an incremental step-by-step analysis of how the basic
SDM model can be modified to enhance its generalization capabilities for classification tasks. Data is taken
from speech generated by a single talker. Experiments are used to investigate the theory of associative
memories and the question of generalization from specific instances. A theoretical analysis of these
findings will be presented elsewhere.

It is stressed at the outset that this study was not an attempt to build an optimal speech recognizer but
rather to investigate SDM. An attempt to maximize absolute score would have entailed maximizing the
"front-end" as well as the "back-end" of the recognizer. Liule effort was placed on maximizing the quality
of the signal produced by the front-end. As you will see, the data for the DIGIT64 database can be discrim-
inated very well.

2. The basic SDM model

I adopt an Artificial Neural Net (ANN) nomenclature to describe the basic SDM model here
rather than that of an associative memory in an effort to acquaint a larger body of readers to the SDM tech-
nology.

" To obtain an SDM publications, list. wrile to: Anonfion SDM Publicafiml, RIACS Leaning Sysmnl Division. NASA

Ame, _n_h Cemer, MS 230-5, Moffeu Held. CA 94035. Te,lep/mne (415) 604-4991, F.nu_ sdmpub_ria_.edu.
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SDM contains an input, hidden, and output layer. Each node in the input layer is binary valued (0 or I).
A binary input paaem is thought of as an address into the memory, Weights between the input and hidden
layer are fixed at time of creation and are also binary valued. The binary weights leading into a hidden
node are an address called d_e location of the node. They are chosen randomly from the set of all possible
2", locations where nl is the number of nodes in the input layer. There are n2 locations (hidden nodes). The

weights from a hidden node to Ihe n3 output nodes are variable and are implemented as coun_rs which are
incremented or decremented by I during training.

Operation of the memory entails activation, reading, and writing. Activation of a hidden node occurs
when an input pauern is within a specified Hamming distance of the node's locatim. A node fires or it
doesn't. This all-or-nothing rule transforms an input pattern of size al into an a far larger activation pattern
of size a2 (up to 1/2 million with some experiments on a c(mnectkm machine (Rogers,1989)). The activa-
tion pattern encodes, as single bits, higher order interdependencies between bits of rite first pattern.

Training memory to respond (writing) with a desired binary output pattern of size n 3 entails increment-
ing the corresponding cotmtef of each activated node if the desired output bit is 1 and decrementing if the
desired output bit is 0.

Testing (reading from) memory entails pooling the counters for each bit of the activated nodes and then

quantizing the resultant sums about 0 to produce a binary output pattern (the basic model includes a global
threshold to accommodate global bias).

This concludes the description of the basic $DM modeL

3. Speech processing

A SUN-386i workstation with In Ariel Corporation DSP-16 board (Texas Instruments
TM$320C"25 signal processor rmming at 40 MHz) was used for SDM simulation and speech _ng.
The DSP-16 can sample up to 50 KHz with a resolulion of 16 bits. All results presented in this report used
I0 KHz sampling.A Realistic33-2001Dynamic Mike was usedforinput.Recordingwas done in a

single-use_officeenvironment(computercoolingfansaudible).
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Figure 1: Typical speech pattern

Front-end processing used 16 bandpass filters dislributed on a Mel frequency scale which were low-pass
filtered and sampled every 6.4 msecs. Amplitude differences between consecutive frequencies were calcu-
lated and quantized to 1-bit. A simple energy-based end-point detection scheme was used and the utterance
cut into 16 equalize-size segments. Majority rule was used to assign a single bit to each segment at each
frequency difference. This yielded a total of 240 (15"16) bits. The pattern was padded with 16 additional
bits to investigate SDM's ability to perform auto-as,ux:iative recall. The resultant pattern contained a total
of 256 bits.

A database, DIGIT64, was collected from a single talker which consisted of 64 repetitions of the digits
{0-9}.

4. Accretive testing and training

An accretive (slowly growning) training strategy was used in all experiments. An utterance (256-
bit pattern) was presented to the memory for recognition and its correct or incorrect response recorded.
That same utterance was then used to train the memory and a new utterance was selected for testing. This
process was repeated to the end of the database. Each utterance was thus used once for testing and once for
training (in that order). This sequential presentation process allows one to construct a curve showing the
rapidity of learning. This sequential adjustment also corresponds to the way an organism must deal with its
environment. An organism can not afford the luxury of analyzing a large body of data before it makes its
decision on how to respond. These arguments also apply to real-time speech recognition systems that must
adapt to their current talker and noise level.

The percentage correct results repotted in this paper refer to the average of the last half of the learning
curve.

Totaltimeforactivation,reading,and writingof a singleutteranceisaboutI.Isecondswhen pro-

grammed inriteMAINSAIL languagerunningon a SUN-386i foran SDM memory with1,024hidden
nodes.
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$. Nearest neighbor and quanfized mean models

Two bench-mark models were used for comparison with SDM. Both models were accretively
tested and trained. The first was the Nearest Neighbor (NN) rule (Cover,1967). Cover showed that for con-
tinuous spaces the decision to classify an tmknown point of the space as that of the label belonging to the
nearest observation point of a sample asymptotically ai_roaches at most twice the Bayes error as the sam-
pie size goes to infinity. For discrete spaces, the error rate for the nearest neighbor rule asymptotically
equals the Bayes rule. Figure 2 shows the ecrcr curve for the 1 nearest neighbor (I-NN) rule. All nearest
neighbor rules which based their decision on more than just the single nearest neighbor (k-NN) had worse
performance.

Errors
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Figure 2: 1-Nearest Neighbor model
DIGIT64 database

ni=256, 0<n2<640, n3=16, k=l, pcc = 100.0%

As one can see, the I-NN rule made no errors in the last half 020 utterances) of the DIGIT64 database.
This shows that the front-end encoding scheme was sufficient to allow excellent discrimination for the digit
vocabulary. Separability of the dam was possible.*

The second model used for comparison was a quantized Mean model where the (running) average pat-
tern for each digit was calculated and each element quantized to 1 bit. This is a very parsimonious model
that needs only one structure for each of the 10 digits, The Nearest Neighbor model, in contrast, stores one
structm'e for each observation (640 _forthe DIGIT64 _).

The model gives an indication of how much discriminatory information is ummined within the class
means. The model also approximately corresponds to a 2-layer Artificial Neural Network that has 256 input
nodes and 10 output nodes. Comparison is made not between the input and the weights but between input
and the quantized weights to determine which output node is most strongly activated. Modification of the
weights simply entails adding (with +1 and -1 values) the input patteru to the previous weights for a given
class (output node).

* Ixshouldbe reckoned zhat Jm SDM, n_peatedeye.ledthroushthedma,was abletolearnthisdatasetwithma re'rot,how-

ever,incha techniquesaysliuleshoat_ atilixyto|eeeralize,whichisthenuttnthrustof_s _.
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Figure 3: QuantizedMean model
DIGIT64 database
ni=256, n2:10, n3:256, k:l, pcc = 95.0%

It can be seen from figure 3 that the quantized Mean model had a 95.0% _ew,ognition rate over the last
half of the data set indicating [hat the class mea_ of the data contain a substantial _on of the infor-
mation needed to discriminate between the classes. The term "ir_" in the caption of the figures stands for
percent correctly classified (which can be considered an estimate of the probability of correct
classification).

6. Area addressing

The basic SDM model uses a fixed radius m determine activation. In this work the closest k loca-

tions to an input patten determined the activation seL The size of lifts "area" (number of nodes activated)
was varied 6"oreexperiment to experiment and is specified by the variable "k" in the figure captions. To
implement area addressing in an ANN it would be necessary to have competitive inhibition between hidden
nodes. Area addressing guarantees that k locations always will be activated. It has the effect of dynamically
increasingordecreasingthesizeoftheactivation radius dependingupontheregionoftheinputspacecon-
sideted.

7. Experiment D1 - Integer output codes

The first SDM experiment was constructed to test the significance of the encoding scheme for
word labels. The output class labels were coded as 16 bit integers with numeric value equal to digit+ 1. In
base 2, digit "zero" was coded as 0..Ol, "one" as 0..10, "two" as 0..11, etz (code 0..00 was used for "don't
know" and was the default for an initially zero memory). The memory had 1024 hard locations which were

randomly chosen. The recognition rate was 49.6%.
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Figure 4: Integer encoding of class names -
DIGIT64 database, random hard locations

n1=256, n2=1024, n3=16, k=23, pcc = 49.6%

8. Experiment D2 - Hadamard output codes

The encoding scheme was then changed to use Hadamard bit codes (Harwit,1979) which form an
orthogona] basis set. That is, for 16 bits there are 16 basis vectors each of which are exactly 8 bits away in
Hamming meu'ic from each other. The encoding rule for the ith component of the kth vector, x, in N
dimensions that was used was:

:t_ :-I &''

where B, and Bi are the bit representations (0.1) of k and i taken as N-bit bit vectors and Bt.B_ is their
inner product. If the inner product is even then lhe element ofx is +1 otherwise it is -1 0 was lead to this
encoding scheme by a theoretical analysis of the "inverse" of the basic SDM model which will be reported
elsewhere). Each digit class was assigneda basis vector from this se4. On reading from memory the 0-
thresholded output sums w_e compared with each class vector and the closest was deemed the winner of
the recognition.

t t
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Figure 5: Hadamard encoding of class names

DIGIT64 database, random hard locations

ni=256, n2=I024, n3=16, k=23, pcc = 81.2%

The recognition rate with the Hadamard encoding rose w 81.2% showing flint the form of class label
encoding is impommL

It should be noted that Hadamard labeling combined with winner-take-aU effectively implements an

n3/4 error correcting code (out of 16 bits 4 can be correcw.d).

9. Memory efficiency

A measure of the effectivene._ of memory is how often a memory location is activated. Locations

that are never activated serve no purpose (future dam may activate these locations and so one must not

enforce total memory efficiency). Figure 6 depicts the fraction of hard locations activated equal to or less

than the specified number of activations.
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Figure 6: Fraction of hard locations activated
DIGIT64 database, random hard locations
n1=256, n2=1024, n3=16, k=23

less than or equal to A

It was found that 28.4% of the memory was unused (0 activation), 50% of the memory was activated 16
or less times, and the most frequently activated location occurred 307 times (out of 640 possible). The dis-
tribution of activations changes with the activation rule (see for example the Selected Coordinate Design of

experiment DO').
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I0. ExperimentD3-Dependenceonhiddenlayersize
Todeterminethedegreeof dependenceof the error rate on the number of hidden nodes in an

SDM an experiment was conslructed that increased the number of hard locations from 10 up to 20,000 in
quasi-logarithmic steps. The results me depicted in figure 7.
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Figure 7: Error graph as a function of hidden layer
DIGIT64 database, random hard locations
n1=256, n2=variable, n3=16, k=16

size

The error rate at ?.OK is 5.2% (94.8% correct) and is decreasing very slowly. This error rote is essen-
tially the same as that obtained by the quantized mean model that used only 10 nodes. The interpretation of
these results is given in the next section.

11. Indifference distance and correlated data

One property of uniformly random binary vectors used by Kanerva is "indifference". That is, out
of n bits most vectors differ from each other by about n/2 bits. For large n this indifference becomes very
pronounced. About any vector almost no other randomly_chosen vector is very close to it. If the locations
in the memory and the paum'ns presented to the memory both follow a random uniform dislribution then
the separation between pattern-pattern, pauern-location, and location-location will all have the same distri-
bulion and locations will cover the input pattern space.

When uniformity of input is violated there is the possibility that many patterns will fall between loca-
tions. The resolution of a uniform distributed memory_ maY not be sufficient to resolve variations in highly
compactedorcorrelated input patterns.

Examination of the within-class Hamming distance of the DIGIT64 database revealed that the average
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separation of patterns was about 40 bits (see Appendix B). Pauerus chosen randomly would have had a
mean of 128 bits so the 40 bit separation was actually 11 standard deviations away from random. The pro-
bability that 2 points chosen at random would fall within 40 bits is less than i0-2_. For an input pattern to
fall with high probability within 40 bits of any hard location it would be necessary to have at least 1027
locations.

The previous arguments plus the experimental results leads one m the understanding that a redistribu-
tion of locations within the memory is necessary to obtain good recognition (once the input distribution is
approximately modeled then including more locations will enhance the density of coverage).

The condition upon which Kanerva derived his basic SDM model of uniform input and uniform
memory locations can now be generalized m:

DISTRIBUTION PRINCIPLE

Place the available memory locations in accord
with the distribution of the input patterns.

This principle was not specified by Kanetva in his book but has been present in his thinking (j)ersonaI
communication) and discussions over the years. Jim Keeler (1988) first mentioned this principle in writing
in the context of the capacity of SDM in comparison with the Hopfield-type Neural Networks.

12. Experiment 1)4. Hidden node distributions

In order to test the dis_ibution principle a collection of 850 templates were generated by _ling
from the inlmducmry portion of a paper on speech recognition _aker,1984). The words modeled speech
(but not specifically digits). These templates were used as the hard locations of SDM (a2=850). The system
was accretively tested and trained using the DIGIT64 database which resulted in a recognition sco_ of
92.1%.

These results show that a speech-disu-ibution of 850 locations was able to exceeded the recognition
accuracy of 10,000 randomly chos_ ones supporting the distribution principle.
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That preconditioning the memory with speech-like sounds aided in the ability of the memory to learn
the digit's sound:name associations is suggestive of processes used in human language learning. A child is
immersed in language for many months after birth before object:name associations are reliably formed,
Could it be that part of this process entails modifying the child's memory by laying down a covering over
auditory-pattern experience on which associations are to built?

13. Thresholding the output layer

With orthogona] codes, such as Hadamard, the _untet values of a location maintain the fre-

quency count of each class that activated the location. That is, the counter values are the linear sum of
orthogonal codes. That they are orthogonal means that the weighting (frequency of occurrence) of each
code can be recovered from the counters s_ply by taking the inner product of a code with the counters.
The value of the inner product is the frequency limes n3 (the number of bits needed to represent the code

which is the dimensionality of the output layer).

This is also Irue when a read is performed and all activated hard locations add their counters to a global
"sums" register. The inner product of each code with the global sums reveals a frequency count of each
code. These frequencies estimate the conditional class probabilities given the input pattern. If these fre-
quencies me the true conditional class probabilities then the Bayes rule, that would minimize the error of
classification, is to choose the class with the maximum probabifity. One can approximate this rule by
choosing the class with the maximum frequency.

If one thresholds the global sums before performing the inner product then the frequency of each class
is distorted and a simple maximum f_equency argument no longer appfies.

Experiments indicate that one gets slightly better results if one does not threshold the output sums.
Experiment D4 was run a second time without thresholding which yielded a performance of 94.6% correct
(effectively equaling a memory with 20,000 random-address locations).
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Figure 9: Hard locations chosen from speech,
DIGIT64 database, correlated hard locations
n1=256, n2=850, n3=16, k=6, pcc = 94.6%

no thresholding

14. Experiment D5 - Incremental address adjustment

Since the placement of location addresses made a substantial difference another experiment was

performed that slightly modified the hard locations of experiment IM. The address of a location was
changed slightly by moving toward the input pattern Of) which activated it. The rate of change was
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govcmed by the parameterp (rate of lcaming) which could vary between0 and I. The memory wasnanin
auto-associativemode. Counters(C) were representedin floating point and we_ quantized to producea
new modified address (A). Quantization is indicated below by square brackets "B"such that [positive]=l.
[non-positive]-0. For vectors quantizad(m occurs on am element by eJemeat basis. If a locado_ with
address A is activated by X then:

C :=C + p@--C) (newcounters)

A _ [C] (new address)

Adjustment occurred during every write operation. For p =.3, recognition rose to 97.5%,
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Figure 10: Incremental address adjustment
DIGIT64 database

n]=256, n2=850, n3=256, k=6, p,:.3, pcc - 97.5%

Starting with speech-like addresses for locations and then modifying _ slightly to c_ more
closely to the actual input digits produced an associative memory that exceeded the simple quantized mean
model (2-layer network).* This shows that further information can be extracv.xl from the dam in excess of
that obtained by the mean model by distributing, in the input space, more than one location for each class.

A slight variation on this incremental address adjustment model was also tried where the fraction of
motion was governed by the clearity of O_esignal present at the read address (global sums)versesthe clear-
ity of the signal stored within the counters of an activated location. Oearity was defined as the sum of the
absolute value of the vector elements. Comparable results to those reported here were obtained.
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15. Experiment I)6. The Selected Coordinate Design

In the previous experiments, each memory ioc_ion examined all 256 bits of the input pau_m to
make its decision to activate or not. An alternative model, the Selected Coordinate Design,* has been put
forlh by Louis ]aeckel (1989) in which hard locations examine only a small subset of the input bits. These
"selected coordinates" are chosen at random and have random bit values. *" A location is activated if an

input paUemexactly mawhcstheselectedcoordinates.

Errors in last 320 utterances Percentage

32
31
30
29
28
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5
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e
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C C • e
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C • e c: :e •

e • e • e • •

• e e e • • •

.... I .... I .... I .... I .... I .... I .... I ....
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10%

9%

8%

7%

6%

5%

4%

3%

2%

1%

Figure II: Errors as a function of the number of selected
DIGIT64 database, no threshoiding, polarity learning
ni=256, n2=2048, n3=16, k=variable

coordinates

* Parrot pending

** The cx_zbeDam of _ _ _s m follow • limi_r deaign where the number of onmne,cfiom betwz_ a gnmule cell

and the mossy fiber inlmU me few, nml_ng from 4 Io 6 Overt,1969).
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The Selected Coordinate Design (SCD) was coupled with a technique introduced by Prager
(1989a,1989b). This technique, which I call the polarity rule, adjusts counter values depending upon
whether the polarity of a bit-sum, constructed during a read, has the correct sign or not. If the polarity is
wrong thetzthe bit-counter of all activated nodes is adjusted just enough so that a future read with the same
input pattern will give the correct sign for that biL

The number of bits, b, in an SCD is a free parameter of the model. To explore the dependence of
classification on it, a series of experiments were run where b was varied from 1 to 8. The results are dep-

icted in figure 11.

The first thing one notices is the pronounced minimum at 3 selected coordinates. That so few bits could
perform so well came as a revelation (it is believed at this time that the data complexity will determine the
number of bits needed and that 3 does not have any universal significants). The 2 errors at this value
correspond to a 99.3% correct recognition rate. Figure 12 shows the error curve for this Selected Coordi-
nate Design of 3 bits.

Errors

101e
91e
81e
71e
61eee
51eee
41eee •
31eee ee
21eeeeeee
lleeeeeee

e

• •

e ee e •

I .... I .... I .... I .... I .... I .... I .... I .... I .... I .... I .... i .... I ....
0 10 20 30 40 50 60

Trial no. ->

Figure 12: Selected Coordinate Design
DIGIT64 database, no thresholding, polarity learning
n1=256, n2=2048, n3=16, k=variable, b=3, pcc - 99.3%

One can get a sense of the efficiency of a Selected Coordinate Design by examining the fraction of
unused memory locations as a function of the number of selected coordinates. This information is

presented in figure 13.

i



- 15

Percent
J

I00%1
95%1

90%1

85%1

80%1
75%1

70%1

65%1

60%1

55%1

50%1

45%1

40%1
35%1

30%1

25%!

20%1

15%1

10%1
5%1
0%1

of unused n_nory

71.2

U

U

56.6 u

U U

U U

42.0 u u

U U e

U U U

27.4 u u u

U U U U

12.8 u u u u
U U U U U

U U U U U

U U U U U

4.9

0.0 0.7 u

I .... I .... I .... I .... I .... I ....
0 1 2 3 4 5

I .... I .... I ....
6 7 8 -> Bit s

Figure 13: Unused memory verses nta_ber of selected coordinates
DIGIT64 database, no threshoidinf, polarity learning
n1=256, n2=2048, n3=16, k=variable

It would be expected that the unused portion of memory would grow exponentially as a function of the
number of selected coordinates if the input data were uniformly random. This expectation follows from the
fact that each additional selected coordinate decreases by a factor of 2 the probability of an address being
activated.

It can be seenfromfigure 13 that, althoughthecurve is increasing, it is not exponential In fact the rate
of increase is linear in the range from 4 to 8 bits (14.6% per bit).

One might ask whether increasing the amount of memory, to compensate for the loss of efficiency,
while increasing the number of selected coordinates would yield better recognition results. Errors in the
early part of the learning curve are indeed reduced by doing this, however, the asymptotic results do not
seem to improve (using 16,384 hard locations and 8 selected coordinates an SCD made 4 errors in the last
half of the learning curve).

A second amazing fact that can be extracted from figure 12 is that a single bit (selected coordinate) was
as good at generalization as the quantized mean model (5% error). This fact is not a coincidence since (for
equal class probabilities) the class mean (unquanfized) is equivalent m a l-bit Selected Coordinate Design.
This fact was realized only after these experiments were run. It will not be shown here but the following
correspondence holds:

2-layer ANN <=> class means <=> 1-b/t 5CD
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where <=> means "is equivalent to'. It seems that a b-bit Selected Coordinate Design affectively approxi-
mates the input probability distribution as a superposition of bth order marginals of the distribution.

Experiments have also been carried out where a distribution in the number of selected coordinates in the
memory have been implemented. When the average number of selected coordinates is b the recognition
rate is essentially the same as that for an SCD which has only b selected coordinates.

The behavior of the Selected Coordinate Design coupled with polarity learning is much more robust
than any of the other forms of Sparse Distributed Memory lested. It consistenLly performs well. One may
ask why this should be so when the amount of information available to each hard location is actually far
less than that in the basic SDM model.

A tentative explanation is that the uniform treatment of hits by the Hamming distance used in the basic
SDM model does not capitalize on local interdependencies. A hard location treats all patterns within its
vicinity equally, independent _ where bit egrors occur, allending only to the number of errors. In contrast,
a hard location in the Selected Coordinate Design attends to which bits are in error for paaerns within its
vicinity.

If one considers the speech patterns in Appendix A, the non-attendan_ to where errors occur would be
equivalent to allowing these errors to be moved around at random from one pan of a pattern to another
part. For speech, this treats high or low frequency errors or front or back errors as equivalent, which they
are not. So, although the SCD model attends to less information within a pattern, it is potentially more
discriminatory.
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16. Summary

A Sparse Distributed Memory was cons_ that used di_re_.word speech palIerns as input
and word labels as oulpuL The properties of the memory were inv_tigaled for varying label codes, hard
location dis_ibufions, and activation rul_. By adopting the best of each of the techniques it was possible to
improve the recognition _ on single-taler digit-mco_ition fn_n 49.6% to 99.3%.

D1 D2 D3 I:)4 D5 D6

S]:_MModel
Basic ...............

s(:x)(]) ..............
Addresses

Random .... _ .........

Speech ..............
Adjusted ............

Layer sizes
nl ..................

n2 ..................
n3 ..................

Area size .............

Output encoding
Integer .............
Hadamard ............

Output thresholded
Yes .................
NO ..................

Training rule
Inc/I::)ec .............

Polarity ............

Generalization rate

X

X

256
1024

16
23

X

X

X

49.6%

X

X

256
1024

16
23

X

X

X

81.2%

X

X

256

(3)
16

16

X

X

X

94.8%

X

X

256
850

16
6

X

X
X

X

94.6%

X

X

256
850

16
6

X

X

X

97.5%

X

(2)

256
2048

16

(4)

X

X

X

99.3%

Table 1: Sunmary of parameter settings used in experiments

(1) Selected coordinate design.
(2) 3 bits randomly selected, value randomly chosen.
(3) Number of hard locations varied from 10 to 20,000.
(4) Variable nomber of locations selected.

It appears crucial that the weights in the first to second layer of the memory be distributed in accord
with the metric-determined distribution of the input data and that, for classification, the labels be as
independent as possible.

The experience gained from these collection of experiments points to the need to be able to construct
memories that are "locally discriminatory" and adaptive to the input patterns presented to them.

It was seen that random placement of addresses was not as good as guided address placement. It was
also seen that attention to local bit interdependencies was better than uniform treatment of bit errors.

Combining adaptive placement with selective attention should lead to even more efficient, higher cali-
bre, associative memories.
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17. Appendix A - pictorial representsticm of sverqe digit templates

Belc_ is presented the quanta! mean paUm_ of the d_u _ken _x_ the D]G_64 c_. A
value of "0" indicates that, out of the 64 repetitions of the pattern, the bit 0 occurred more often than the bit
Iinthislocation.Forvisualclearityaperiod","isusedtorepresentabitvalueof|.
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18. Appendix B - Distribution of distances of digits
Below is presented the average Hamming distance of patterns within-digits and between-digits for

the DIGIT64 database.

Zero 40
One 82 39
Two 68 89 48

Three 86 83 74 40
Four 74 52 75 73 35
Five 98 53 104 84 64 36

Six 89 122 93 86 109 121
Seven 76 109 93 107 102 106

Eight 105 109 82 78 92 118
Nine 95 65 95 68 75 59

48
82 52
92 112 33

108 107 109

Zero One Two Three Four Five Six Seven Eight

44

Nine

Average Hamming distance of digit observations
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Count
A

10
9
8
7
6
5
4

3
2
1

Dist 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Std 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LogP -50 -33 -19 -9 -3 -0

Histogram of average distances WI3"HIN-DIGITS

Count
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9
8
7
6
5
4
3
2
1

112
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95 109
78 86 95 109
76 86 93 109
75 84 93 108
75 83 92 107

68 74 82 92 104 107

53 64 68 74 82 89 102 106 122
52 59 65 73 82 89 98 105 118 121

...i...i...i...I...I..-I---I---I---I---I---I---I---I'''I'''I'''I''''"

Dist 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Std 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LogP -50 -33 -19 -9 -3 -0

Histogram of average distances BE'IV_EN-DIGITS
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19. Appendix C - Words used in speech-determined addresses

Below are the 850 words (not clistinc0 used to creaxc and load the hard locations of experiments
D4 and D5. All numeric references and words such as "w", "two", "wo", "four", and "for" have been

deleted from the original text.

THE _EDOM OF SPEECH JANET M BAKER PHD DRAGON SYSTEMS INC CHAPEL BRIDGE
PARK CHAPEL STREET NEWTON MA_USA ABSTRACT SKILLFULLY CAST A NEW COM-

MI2_CATIONS LINE TETHERS AND SECURES THE STRUCTURE A NEWLY CREATED WEB

OF CAPABILITIES BLOSSOM ABOUT IT THE CULTURAL CHANGES WROUGHT BY ESTAB-

LISHING EAST WEST TRADE ROUTES OR INEXPF.NSIVE TELEPHONES ARE IRREVERSIBLE

THE FREEDOM WE ENJOY IN SPEAKING OTHER PEOPLE WILL SOON EXTEND OUR SPEAK-

ING WITH MACHINES AS WELL HOW WE EXERCISE THIS NEW FREEDOM WILL DETERMINE

NEW WAYS WORK AND. PLAY THIS ESSAY EXPLORES THE PROGRESS OF SPEECH PAST
PRESENT AND FUTURE AND THE CREATIVE CHALLENGES NOW SPINNING ABOUT US

CODED COMMUNICATIONS TIME-SPACE COMPRESSIONS HUMAN SPEECH HAS PROB-
ABLY BEEN EVOLVING SINCE THE DAWN OF HUMANITY THE REFINEMENTS OF SOUND

AND STRUCTURE HAVE ESTABLISHED LANGUAGE COMMUNICATE THE IDEAS AND

INFORMATION WE SHARE AS A SOCIETY SPEECH IS A UNIQUELY EFFECTIVE REAL-TIME
INTERACTIVE COMMUNICATION MODE FREELY PRODUCED AND CONSUMED BY US ALl.,

IN PRIVATE CONVERSATION AS WELL AS PUBLIC ORATORY SPEECH OPERATES AS A

BROADCAST MEDIUM DISTRIBUTING INFORMATION OVER SHORT MODERATE DIS-

TANCES UNCONSTRAINED BY VISUAL BARRIERS IN TIMES LONG PAST SPEECH PRO _

VIDED THE PRIMARY VEHICLE CONVEYING IN STORY AND SONG THE NEWS AND TRAD-

ITIONS OF THE DAY AS TOLD BY BARDS AND OTHERS IN THEIR TRAVELS THE CODIFICA-

TION OF SOUND INTO SPOKEN LANGUAGE PERM1TS PEOPLE MORE COMPLEX COM-

MUNICATIONS AND CONSEQUENTLY MORE CHOICES IN CONDUCTING THEIR LIVES
WITH DISTINCTIVE INDIVIDUALITY INDEED THE VALUE OF THIS FREEDOM IS

REFLECTED IN THE SEVERITY OF PUNISHMENT METED OUT AT THE TOWER OF BABEL

AS THE PRICE OF PRIDE THE TOWER'S PEOPLES POUND THEMSELVES EACH SPEAKING

DIFFERENT LANGUAGES AND UNABLE COMMUNICATE WITH SPEECH FURTHER

CEMENTING THIS BARRIER THEY WERE THEN SENT ABROAD SEPARATE LANDS

PROMETHEUS BOUND NUMBER THE PRIMARY SCIENCE I INVENTED THEM AND HOW SET

DOWN WORDS IN WRITING THE ALL-REMEMBERING SKILL, MOTHER OF MANY ARTS WE

LEARN FROM AESCHYLUS THAT HUMANITY WAS GIFTED WITH WRITING FIRE AND

OTHER TREASURES STOLEN FROM THE GODS BY PROMETHEUS FALLEN FROM THEIR

GRACE INFURIATED ZEUS RETALIATED BY CHAINING PROMETHEUS A MOUNTAINTOP

AND UNLEASHING THE EVILS OF PANDORA'S BOX I.,q:K)N HUMANITY WHETHER BES-

TOWED BY PROMETHEUS' HAND OR NOT WE KNOW THAT WRH'TEN LANGUAGE IS

RELATIVELY RECENT PROGRESSING FROM THE PHOENICIAN ALPHABET MESOPOTAMIAN
CUNEIFORM AND EGYPTIAN HIEROGLYPHICS TOOK ABOUT YEARS IN THE PAST

YEAR TIME-FRAME WRITTEN INFORMATION COULD THE FIRST TIME PROVIDE A RELI-

ABLE AND PERMANENT RECORD AND AFFORD ACCURATE COMMUNICATION WITH PEO-

PLE AT OTHER TIMES AND OTHER PLACES AS CLAY TABLETS GAVE WAY LESS

CUMBERSOME AND COSTLY PAPER SIMPLE INSCRIBED PRONOUNCEMENTS THE MASSES

COULD BECOME MORE DETAILED WITH LESS EFFORT AND MORE PRIVATE THE

GREATER CARE AND COST OCCASIONED BY CONSTRUCTING COMPACT COMPOSITIONS

IN COMPARISON WITH SPOKEN MESSAGES WERE BALANCED BY THEIR UNIQUELY
ACCURATE PORTABLE TRANSMISSION AND DISSEMINATION OF KNOWLEDGE AND

INFORMATION SINCE GUTENBERG'S INVENTION OF THE PRINTING PRESS IN THE POOR

HAVE GAINED ACCESS THIS WRFI'rEN KNOWLEDGE AS WELL AS THE PRIVILEGED FEW

AS THE WRITI'EN WORD HAS BECOME EVER MORE BROADLY DISTRIBUTED WORLD

LITERACY HAS GROWN IN. RESPONSE THE EASE OF PRODUCING PRINT AS WELL AS

CONSUMING IT HAS RESULTED TODAY IN MORE WRITTEN LESS WELL THAN EVER
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BEFORE IN ADDITION THE STEADY DEMAND EVER MORE PRIN'rF._PUBLICATIONS THE
DESIRE PERSONAL COPIES OF TEXT ON DEMAND HAS TOTALLY ECLIPSED CARBON
PAPER IN THE _D OF PHOTOCOPIES THE LONG-PROMISED PAPERLESS OFFICE
ELUDES US ONCE AGAIN LONG-DISTANCE COMMUNICATIONS ONCE EXEMPLIFIED BY
ROMAN I-IILI_TOPSIGNAL FIRES AMERICAN INDIAN TOM-TOM DRUMS AND MECHANI-

CAL SEMAPHORE TOWERS HAVE GIVEN WAY IN REMARKABLY SHORT ORDER ORBIT-
ING SATELLITE STATIONS FROM CARRIER PIGEON PONY EXPRESS TRAINS TRUCKS
AND PLANES THE ADVENT OF EACH NEW MEANS OF TRANSPORTATION HAS SHRUNK
THE TIME AND SWELLED THE FLOW OF INFORMATION IN THE PAST YEARS WE HAVE
WITNESSED THE INVENTION OF THE TELEGRAPH TRANSMIT F_LF.CTRICALLY CODED
SIGNALS REPRE_G LETTERS OVER LONG DISTANCES BY WIRE USING SPECIALIZED
KEYSETS AND SKILLED MORSE CODE OPERATORS THE TELEGRAPH MADE RAPID REMOTE

MESSAGING VIABLE THE FIRST TIME AND JUST AS TYPEWRITERS WERE COMMING
nero vootm THE n_'ENTION OF THE Tm.EPHONE HNALLY SUCCEEDED INTRANSMrr-

TING SPEECH ITSELF BY FIRST TRANSFORMING _ SOUND PRESSURE WAVEFORM INTO
FLUCTUATING ELECTRICAL CURRENT AND THEN BACK AGAIN SPURRED ON BY

FREEDOM OF RAPID REMOTE SPEECH NETWORKS SPRUNG UP WHILE INEXPENSIVE
HANDSETS PROLJl:ERATED THROUGHOUT THE PUBLIC AND PRIVATE SECTORS TEN

YEARS LATER IN HEINRICH HERTZ PRODUCED THE FIRST RADIO WAVES WITHIN THE
NEXT DECADE MARCONI DEMONSTRATED A RADIO TRANSMISSION AND ESTA-
BUSHED MARCONI'S WIRELESS TELEGRAPH PROMOTE SHIP-TO-SHORE COMMUNICA-

TIONS ONLY A SHORT WHILE _ THE FIRST TRANSATLAN'rIC COMMUNICA-
TIONS WERE DEMONSTRATED THOUGH DUE IN PART THE _D ASSISTANCE
RENDERED BY IONOSPHERIC REFLECTIONS WHICH COMPENSATED THE EARTH'S CUR-
VATURE IN SIMULTANEOUS SOUND AND PICTURE WIRELESS BROADCASTS CREATED
TELEVISION REGULAR BBC TRANSMISSIONS COMMENCED IN THE PORTABILITY AND

AFFORDABILITY OF THE TELEVISION ONCE AGAIN ESTABLISHED A MECHANISM WIDE-
SPREAD INFORMATION FLOW PEOPLE RICH AND POOR THE PAST YEARS SATELLITES

HAVE COME OF AGE EXTENDING OUR REACH YET FURTHER _YL=TIN_ THESE PATH-
WAYS AND TRANSMISSIONS SO CLEVER WE OBSERVE THAT LANGUAGE SPO_ AND
LANGUAGE WRITTEN DESPITE THEIR P_ ARE AS SEPARATE TODAY AS THEY

YEARS AGO THE ULTIMATE ALCHEMY IN WHICH WE ARE NOW ENGAGED
TRANSMUTES THE SPOKEN AND WRI'I'rENBRINGING LANGUAGE FULL-CIRCLE AT LAST
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